Code overview (ImageNet example)
Created: 23 Dec 2022, 02:09 PM | Modified: =dateformat(this.file.mtime,"dd MMM yyyy, hh:mm a")
Tags: knowledge,
-image1.png)
Embed images first
dp = embed(
data=dp, input_col=“image”, encoder=“clip”, device=0
)
Then run slice == mixture model
domino = DominoSlicer(
y_log_likelihood_weight=40,
y_hat_log_likelihood_weight=40,
n_mixture_components=60,
n_slices=10,
max_iter=10,
n_pca_components=128,
init_params=“confusion”,
confusion_noise=3e-3
)
domino.fit(data=dp, embeddings=“clip(image)”, targets=“target”, pred_probs=“prob”)
dp[“domino_slices”] = domino.predict_proba(
data=dp, embeddings=“clip(image)”, targets=“target”, pred_probs=“prob”
)
Then describe
- generate_candidate_descriptions
- With candidate descriptions → embed again
text_dp = embed(
text_dp,
input_col=“output_phrase”,
encoder=“clip”,
device=0
)
- Then plot with explore()
explore(
data=dp,
embeddings=“clip(image)”,
pred_probs=“prob”,
targets=“target”,
slices=“domino_slices”,
text=text_dp,
text_embeddings=“clip(output_phrase)”,
)